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Abstract

Two important aspects of filled polymer systems that can influence elasticity are the random position of filler particles and the

nonuniformity of polymer chain lengths that form the chain/particle network. Historically, most network elasticity models have been based

on idealized assumptions of uniform chain length constrained to highly symmetric orientations. We present a novel, three-dimensional

explicit polymer and node network model (EPnet) that includes both randomly distributed filler particles (nodes) and polymer lengths taken

from a Gaussian distribution. The molecular level polymer forces that produce elasticity are assumed to operate between pairs of connected

network nodes. The numerical model is amenable to any molecular force that depends on the distance between two nodes, however, for this

paper, we assume that the polymer chain segments that connect the filler particles obey a simple two-force model, i.e. a constant force

required to stretch a single polymer chain and a force arising from the binding energy between a polymer chain and a filler particle surface.

Free ends, i.e. polymer segments connected to only one particle, do not contribute to the elasticity. With these assumptions, the model

contains intrinsic mechanisms that appear to predict the phenomena of yield stress, tensile failure, permanent set and stress hysteresis. The

model is applied to a mesoscale volume element (,1 mm3) of silica-filled polydimethylsiloxane to study the micromechanical stress in

response to various strains, e.g. tensile, compressive, shear and swell. Model predictions are in quantitative agreement with tensile

stress/strain experiments.

q 2003 Published by Elsevier Ltd.
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1. Introduction

Most network elasticity models are based on the change

in entropy of a network chain that occurs in response to an

applied strain. Analytic expressions for the stress are

obtained starting with thermodynamic considerations

[1–3]. The Helmholtz free energy, F; may be written as

F ¼ E 2 TS; ð1Þ

where E is the internal energy, T is the absolute temperature

and S is the entropy. Both the temperature and volume are

assumed to be constant. The tensile force, f ; is obtained by

differentiating with respect to the length, L; and assuming

that the internal energy does not change as the sample is

extended.

f ¼
›F

›L
¼ 2T

›S

›L
: ð2Þ

To obtain analytic solutions for the stress, requires a

tractable expression for the entropy derivative which leads

to a number of idealized assumptions about the network. All

of the chains must have the same length and, for most

models [4–9], they must be constrained to highly symmetric

orientations, i.e. along the Cartesian axes or diagonals. The

solutions are valid only if the strain is imposed along an axis

of symmetry. As applied to systems of silica-filled

polydimethylsiloxane (PDMS), these models may be

criticized for a number of reasons. The chain lengths

between filler particles or crosslinks are obviously not all of

the same length and, because the filler particles are

dispersed randomly throughout the volume, there are no

axes of symmetry, a priori. Also, these models contain no

physical mechanisms that provide quantitative predictions

of permanent set or stress hysteresis. A notable exception to

these approaches is that due to Kilian et al. [10]. They

proposed an analytic theory for the elasticity of carbon black

rubbers that explicitly included a number of distributions of

connecting chain lengths. The elastic force was assumed to
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be the volume weighted average of the usual rubber elastic

force and a force arising from the interaction of filler

particles with themselves and the rubber matrix. Reichert

et al. [11] has proposed a double network model, one

parallel to the strain axis and one perpendicular, based on

the observation in carbon black rubber that the local

deformation is not homogeneous. The total stress is assumed

to be the average of the two networks, weighted by the

volume fraction of the filler particles. Wu and van der

Giessen [12,13] extended Treloar’s non-Gaussian model for

a crosslinked rubber network to include random chain

orientations. The analytic expression that they derived for

the stress assumed a constant chain length and the usual

rubber elastic force for a chain due to changes in

conformational entropy. Termonia applied a two-dimen-

sional lattice model to study the elasticity of spider silk [14].

Silk is known to be comprised of amorphous polymer chains

and small crystallites that presumably form a network,

making it functionally similar to a filled polymer.

Termonia’s model included four tensile moduli: chain–

chain hydrogen bonding, single chain elasticity, crystallite

trapped chain elasticity and the elastic modulus of the

crystallites. The model assumed a uniform chain length with

highly symmetric, nearest neighbor-only chain

connectivity.

With respect to silica-filled PDMS, theories that are

formulated from Eq. (1) have an even more troubling issue;

the experimental evidence raises questions about the

assumption that the internal energy does not change under

strain. Unlike conventional crosslinked rubber, silica-filled

PDMS does not exhibit the linear increase in stress with

temperature at low strains. The experiments by Galanti and

Sperling [15–17] clearly reveal a negative or near zero

temperature derivative for strains up to 40%. If the

temperature derivative of the stress is zero, the origin of

the stress cannot be due to changes in entropy. Accordingly,

Galanti and Sperling concluded that most of the stress must

be due to changes in internal energy. More recently Clement

et al. [18] measured the stress/strain behavior of silica-filled

PDMS at various temperatures. While they concluded that

the elasticity was due to entropic effects, their data suggest

that the derivative of stress with respect to temperature is

zero up to about 10% strain. As they are presently

constituted, we do not think that any of the existing models,

described above, are directly applicable to silica-filled

PDMS systems.

In this paper, we will focus on how the first two

objections may be overcome, the inherent randomness of

the filler particle positions and the chain lengths. We will

present a numerical mesoscale network model that accom-

modates both random node positions and a distribution of

chain lengths. Our goal will be to provide a realistic bridge

between molecular level forces and micromechanical

behavior. The resulting model will be shown to treat several

types of strain including tensile, compressive, shear and

swell. We shall compare the model predictions for tensile

strain to experiments and provide representative stress/-

strain calculations for compressive, shear and swell strains.

2. Model description

Based on representative experimental data for particle

size and chain length and also computational limitations, we

choose as a representative volume element a 1 mm cube,

centered at the origin. This is large enough to smooth the

interactions of individual particles but small enough that a

reasonable density of particles and chains is computation-

ally feasible. Physically, the volume element can contain

over a million PDMS polymer chains of molecular weight

(MW) of 500,000 Da, and between 103 and 104 filler

particles for a silica concentration of 14% by volume. When

fumed silica is used as the filler, the particles are composed

of aggregates of small silica spheres having a diameter

,10 nm. The largest dimension of the aggregates is

typically on the order of ,100 nm. We expect that

explicitly treating on the order a few percent of this number

will be statistically representative. The simulation begins by

randomly placing nodes on two or more faces of the volume

element depending on the type of strain. For tensile strains,

the two opposing faces normal to the strain axis are chosen.

The face nodes provide a convenient subset over which

surface forces may be integrated to compute stresses.

Throughout the strain cycles, the face nodes remain fixed on

the volume element surfaces selected. Internal nodes are

then placed randomly within the volume element. The only

constraint applied to their placement is a minimum nearest

neighbor distance, typically a few hundredths of a mm. If

specified, crosslink nodes are also randomly dispersed

subject to the same constraint.

The nodes, facial and interior, are then connected by

chain segments to form a continuous network. Beginning

with the face nodes, the nodes are processed sequentially,

subject to the constraint that no face nodes are connected by

the same chain. For each node, i, a random number of

chains, drawn from a Gaussian distribution (mean and

standard deviation supplied by input) are created and

associated with the node being processed. The attachment

point on the chain may be an end point or any point along

the chain. The second node, j, that the chain is connected to,

is chosen randomly from a list of neighbors of node i with a

weighting factor of 1=Rij;
2 where Rij is the distance between

the nodes i and j. Since the number of neighbors increases as

the surface area of the enclosing sphere, this weighting

factor assures that every neighboring node has equal

probability of being chosen. Other weighting schemes can

be readily implemented if desired. Every chain may have

zero, one or two free ends. The process is repeated for each

node subject to the constraints that only a single chain may

connect any two nodes and that the total number of chains

attached to any node be less than a maximum value

(specified by input). The number of face nodes is determined
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by the constraint that the number of chains crossing a plane

normal to a strain axis be approximately constant through-

out the volume. Periodic boundary conditions are imposed

appropriate to the type of strain being modeled. For tensile

and shear strains, the axes transverse to the strain axis are

periodic; for compression, the axis parallel to the strain axis

is periodic. Periodic boundary conditions assure that all

nodes have a spatially homogeneous set of neighbor nodes

from which connections can be made. As we pointed out

above, a 1 mm cube of PDMS can contain over a million

polymers of MW 500,000 (number averaged). Although it is

not computationally feasible to include this many chains in

our simulations, we must take this deficiency into account

when stresses are calculated. This is accomplished through a

chain coarseness factor which is defined as

fcoarse ¼ VcellrPDMS=ðMchainsð1 2 fboundÞð1 2 ffillerÞÞ; ð3Þ

where Vcell is the volume of the simulation cell, rPDMS is the

density of PDMS, Mchains is the total mass of chains

constructed, fbound is the fraction of chains bound to at least

two filler particles and ffiller is the volume fraction of the

filler particles.

Chain crosslinking proceeds in much the same manner as

node connections with the added complication that a

crosslink may connect two separate chains (hetero-cross-

link) or simply make a loop in a single segment (self-

crosslink). The determination of which type of crosslink a

particular crosslink node should be is determined randomly

based on the probabilities supplied by input. For the case of

a self-crosslink node, another network node is chosen from

its neighbor list and a chain segment attached to this node is

chosen randomly, subject to a length constraint. The

candidate chain segment must be long enough to reach

from the crosslinking node to each of the nodes that define

its endpoints plus a minimum amount for a loop segment.

The chain segment selected is then randomly divided into

three new segments, a loop plus one segment to connect to

each of the end nodes, again subject to the length

constraints. Crosslinking between different chain segments

(hetero-crosslinking) is accomplished in an analogous

manner, except that two neighboring connecting chain

segments are chosen. Initially, we have excluded free ends

from participating as crosslinked segments and do not allow

multiple crosslinks per chain.

Various strains may be imposed on the volume element

such as tension, compression, shear and swell. The resulting

stress is calculated by summing the appropriate force

components over the facial nodes. For the case of tensile

strain along the y axis, the net y component of force on each

face is computed by summing over the facial nodes.

Fy ¼
XFace

i

ŷ·kfi; ð4Þ

The engineering stress is then computed as the difference

between the net forces on the opposing faces divided by the

area of an end face:

S ¼ fcoarseðF2 2 FþÞ=Axz ð5Þ

where fcoarseness is the chain coarseness factor, F2;þ are the

average forces on the cell faces normal to the strain axis, and

Axz is the initial area of the volume element face.

Strain is applied in small increments to ensure that the

maximum movement of any node is less than the distance

over which a node–node force could change appreciably. In

the case of the two-force model (described below), the

limiting distance is the distance over which the force

transitions from the chain-stretch to surface-slip value.

Typically, this is set to 0.04 mm, which limits the maximum

elongation factor to 1.002. The manner in which nodes are

moved in response to the strain step depends on the type of

strain being imposed. For tensile strain, the following

procedure is used. At each strain step, an affine transform-

ation ða ¼ 1:002Þ is applied to all nodes.

y ¼ ay0; x ¼ a21=2x0; z ¼ a21=2z0; ð6Þ

where the primes refer to the original coordinate values.

When the distance between two connected nodes reaches

the length of the connecting chain segment, the segment is

assumed to be taut. Node separation distances may be

reduced by a constant value (provided by input) to account

for the finite size of the filler particles. An optional node

relaxation step may be applied if the net force on any node is

above some threshold value. The tension of taut chains may

be relaxed by moving the node an incremental distance in

the direction of the net force. If there is a free end segment

adjacent to the taut segment, an amount of chain length is

transferred from the free end to the connecting segment

sufficient to maintain the taut condition. If the length of the

free end is too short to do this, then the chain is assumed to

detach from the node and the status of the connecting

segment is changed to that for a free end. The incremental

chain lengths transferred from original free ends is summed

at each strain step. We define a measure of permanent set as

the ratio of the sum of the incremental chain length transfers

to the total length of all chains in the volume element. The

option exists to reverse the strain step at some strain value to

effectively cycle the volume element back to zero strain. For

the two-force node–node interaction model, this results in

stress hysteresis. This is discussed in reference to Fig. 7.

3. The two-force node–node interaction model

Previously, we have reported atomistic simulations of

isolated PDMS molecules interacting with themselves or a

hydroxylated silica surface [19,20]. These simulations

suggested that the force required to straighten (or stretch) an

isolated PDMS chain from a low energy conformation was

approximately constant, i.e. the internal energy increased

linearly. Changes in the internal energy were found to be

dominated by the electrostatic and Van der Waals’ terms in the
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classical potential used for the simulation. It was further found

that a similar situation obtained for a single PDMS chain

adhering to a hydroxylated silica surface. The force required to

pull a chain away from the surface was found to be

approximately constant and about a factor of three greater

than the stretching force.

An analytic model was developed to describe the

stress/strain behavior of a volume element of uncrosslinked

silica-filled PDMS. In order to obtain agreement with

experiment, it was found that the force required to slide a

taut chain across a filler particle surface had to be increased

by about a factor 6. Physically, this corresponds to assuming

that every bound chain has ,6 contiguous dimethylsiloxane

groups bonded to the silica particle surface by Van der

Waals’ and electrostatic forces. In order to move a chain

across a particle surface, the Van der Waals’ and

electrostatic forces for all six units must be overcome

simultaneously. This may be regarded as a molecular

frictional force. We shall refer to the two force values as

Fstretch and Fslip: This is the basis of the two-force node–

node interaction model. Initially, the distance between

connected nodes is greater than the connecting chain

segment and the segment is slack. As the nodes move

apart under an applied strain, the operative force is the

stretching force, Fstretch: When the separation distance

equals the length of the connecting chain segment, the

chain becomes taut, and the force changes to the sliding

force, Fslip: In practice, the change in the force is smoothed

by joining the two force values with a third order

polynomial constrained by zero derivatives at the endpoints.

With the additional assumption that the distribution of

connecting chain lengths is a Gaussian, the analytic model

could be fit to the experimental data using reasonable

parameter values. With only a single stretching force, this

model does not contain a mechanism to account for the

Mullins effect.

The simulation method used to obtain the forces may be

criticized because it considered only isolated PDMS chains.

Possibly, if a realistic environment of neighboring chains

were included in the simulations, their presence would act as

a constraint that could influence the value of the forces. This

applies to both chain stretching and surface slip simulations.

At this time, performing atomistic simulations with

sufficient surrounding material to address these issues is a

computationally challenging task. We consider this to be an

area requiring further work. However, it may be argued that

since PDMS is a viscous liquid, interactions between

neighboring chains may be weak, and there is some

experimental support for this. Boué et al. [21] dissolved

deuterated PDMS chains in non-deuterated networks and

used small-angle neutron scattering to see if the deuterated

chains were influenced by the surrounding network as it was

strained. They observed no detectable anisotropy for strains

up to 45%, suggesting that a PDMS chain does not interact

strongly with neighboring chains.

4. Discussion

At present, the network model can simulate four types of

strain: tensile, compressive, shear and swell. For tensile

strain, there are a number of experiments to which we can

compare the model predictions; we chose to compare to the

data of Boonstra et al. [22]. For the other types of strain, we

were not able to find experiments that included sufficient

detail to allow comparisons. We present representative

calculations for these strain types for illustrative purposes

only.

To simulate a tensile stress/strain experiment, we

construct a representative volume element network (uncros-

slinked) with nodes on the faces normal to the tensile axis

ðyÞ at y ¼ ^0:5 mm; with periodic boundary conditions in

the orthogonal dimensions ðx; zÞ: The volume element is

sequentially distorted by the incremental affine transform-

ation consisting of an extension factor of 1.002 along the y

axis and a factor of (1.002)21/2 in the transverse dimensions.

This is sufficiently small to resolve the transition from

stretching to slipping as a connecting chain segment

becomes taut. At each strain step, connecting chain lengths

are compared to the node separation distance to decide if the

chain has become taut. The engineering stress is computed

according to Eqs. (4) and (5). The predicted tensile stress of

a 1 mm3 volume element for strains up to 9 is shown in Fig.

1, for five independent network constructs. The parameter

values, listed in Table 1, were chosen to be consistent with

the experimental conditions of Boonstra et al. for filled but

uncrosslinked PDMS and, the predicted stress is in

reasonable agreement with the experimental data (solid

triangles). The predecessor analytic model [19] was also fit

to this experiment with similar parameter values. The

calculated stress reaches a maximum value at a strain of

about 9, which is close to the observed failure point at a

strain of 7. As explained above, a chain can detach from a

Fig. 1. Predicted tensile stress (x’s) for filled, uncrosslinked PDMS–silica

and experimental values of Boonstra et al. [22] (solid triangles) for

parameter values listed in Table 1. Five independent random networks were

simulated.
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filler particle after all of the available material in an adjacent

free end slips over the surface as the node separation

distance increases in response to the strain. In the

simulations, the maximum stress occurs when the rate that

chains detach from network nodes exceeds that of chains

becoming taut. For strains above the peak stress point,

commonly referred to as the strain-softening region, the

model predicts lower stresses. Silica-filled PDMS usually

does not exhibit this behavior and we assume that tensile

failure occurs when the strain exceeds the maximum stress

point.

The fact that a lower average value for the MW of the

PDMS chains (400,000 vs. 500,000 Da for the experiment)

was necessary to obtain agreement with the experiment, is

not surprising. A PDMS chain of MW 500,000 Da has an

extended length of nearly 2 mm, so it is reasonable to expect

that some of them can adhere to more than two filler

particles, resulting in more than one connecting segment per

chain. The effect that this would have on the simulations

would be to lower the average MW of connecting chain

segments. To the extent that multiple node connections

occur commonly, one could argue that the simulation value

of 400,000 is actually too high. More difficult to reconcile is

the very low value for the required width of the Gaussian

distribution of chain MW, 30,000 Da, since the polydis-

persity of PDMS is typically found to be two or greater. In

the process of varying the values of the simulation

parameters to achieve agreement with experiment, it was

found that the calculated ratio of the connecting segment

length to node separation distance, L=R; had a strong

correlation with the shape of the stress strain curve. It is this

ratio that determines the amount of extension that an

individual chain can accommodate before the tensile force

changes from fstretch to fslip: Apparently, the algorithm

employed to choose connected node pairs results in

sufficient variation in this ratio to achieve a fit with the

experimental stress/strain. Increasing the distribution width

for the chain MW results in an excessive amount of

variation in L=Rij We considered this an area requiring

further study.

While the two-force node–node model enforces a yield

stress, it does so at the expense of having an unphysical

discontinuity at zero strain. This could be remedied by

giving the stretching force a finite turn-on length, analogous

to the transition length for switching to the slipping force. In

fact, some of the atomistic simulations displayed such

transitions. Physically, we would interpret this to mean that

chains are not completely natured, i.e. collapsed on

themselves, allowing some extension at near zero force.

This is not included in the initial version of the model

because we have no good estimate of what the transition

length should be from simulations. Considerable variation

in the initial modulus is found in the experimental literature

as well. Including a turn-on parameter in the model at this

stage would simply result in yet another parameter to be fit

to experiment. We anticipate that further simulations and

low strain experiments will provide guidance for estimating

this parameter.

Material that is crosslinked as well as filled is treated by

the addition of cross linking nodes, having a functionality of

four. Each crosslink creates a junction in two connecting

segments associated with neighboring filler nodes. To fit the

filled and crosslinked stress/strain data of Boonstra et al., we

added about 800 hetero-crosslinks in addition to the 1500

interior nodes. This resulted in about 16% of the chains

being crosslinked. The predicted stress/strain for this case,

shown in Fig. 2, is in reasonable agreement with the

experimental data, with the exception that the simulations

do not predict a stress maximum near the experimental

failure point. The concentration of dichlorobenzoyl per-

oxide reported for the experiment was 3.2 parts-per-hundred

(phr). If every peroxide molecule resulted in a chemical

crosslink, a chain of MW 500,000 Da would have, on

average, 35 crosslinks, and a typical connecting segment

comprised of one third of the length would have ,12

crosslinks. However, the actual efficiency of the peroxide

crosslinking process was not reported. While this may

Table 1

Principal input parameters and values used for simulations of Boonstra

experiment [22]

Parameter Simulation Experiment

Polymer MWn (dalton) 400,000 ^ 30,000 500,000

Filler particle density (mm23) 1500 1000–10000 ?

Filler volume fraction 14% 14% (35 phr)

Fraction bound 0.75 0.85, Single particle

Minimum node separation (mm) 0.03 NA

Neighbor cutoff distance (mm) 0.13 NA

Chain stretching force, Fstretch 5 £ 1026 NA

Chain slipping force, Fslip 5.3 £ 1026 NA

Chain coarseness factor 142 NA

Chain density (mm23) 9320 .1 £ 106

Fig. 2. Predicted tensile stress (x’s) for filled and crosslinked PDMS–silica

and experimental values of Boonstra et al. [22] (solid triangles) for

parameter values listed in Table 1. Five independent random networks were

simulated.
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appear to be a significant discrepancy, it may not be totally

inconsistent with experiment. It is commonly found that the

tensile strength for crosslinked but unfilled material is as

much a factor of 10 lower than that for filled and crosslinked

material [23]. This, too, is considered an area requiring

further study. We expect that the network model will allow

quantitative studies on the mechanical effects of crosslinks.

Because the model does not include the compressibility

of the polymer, compressive strain is simulated as a two-

dimensional expansion normal to the compression axis.

Face nodes are placed on the four faces transverse to the

compression axis during the network build. As in the case of

tensile strain, strain is applied via incremental affine

transformations of all nodes and stress is computed

analogous to Eq. (5). A plot of stress vs. compressive strain

is shown in Fig. 3 for the parameter set listed in Table 1.

Since we have no experimental data to which the predictions

can be compared, the plot is for illustrative purposes only.

Uniaxial shear strain is applied by the transformation

z ¼ z0 þ
Dzface

0:5Ybox

y; ð7Þ

where z0 and z and are the initial and final z coordinates of

the node, y is the node y coordinate, Dzface is the shear

translation of a face of the volume element and Ybox is the

width of the volume element. A representative shear

stress/strain prediction is shown in Fig. 4 for illustrative

purposes.

Swelling a filled polymer in a good solvent is often used

as qualitative measure of the crosslink density. Swell strain

is simulated by placing face nodes on all six faces of the

volume element, and sequentially applying a multiplicative

factor to all of the node coordinates. Physically, we interpret

swell strain as being due to the solvation of the connecting

segments, essentially neutralizing the stretching force,

allowing the network to expand until the chains become

taut and the stronger force, Fslip; prevents further swelling.

In our simulations, stress is computed analogous to Eq. (5)

at each strain step. We assume that the slipping force is not

affected by the solvent. The simulations for swell strain,

shown in Fig. 5 are consistent with these assumptions. We

expect that the maximum swell factor should be close to the

strain value at which the stress begins to increase sharply. A

representative plot of this is shown in Fig. 5 for parameter

values listed in Table 1.

Permanent set is the phenomenon characterized by the

incomplete recovery of a material to its original length after

being strained. This can be as much as 20% or more of the

original length, and often has an adverse effect on the

performance of elastomers. A possible mechanism for this

exists in our model by virtue of the fact that material can be

transferred from a free end chain segment to the connecting

segment, as a taut chain is further extended. We suggest that

the local accumulation of this material between connected

filler particles will tend to prevent them from returning to

their original separation, resulting in permanent set. In the

Fig. 3. Predicted compressive stress for filled and crosslinked PDMS–silica

using parameter values listed in Table 1. Five independent random

networks were simulated.

Fig. 4. Predicted shear stress for filled and crosslinked PDMS–silica using

parameter values listed in Table 1. Five independent random networks were

simulated.

Fig. 5. Predicted stress due to swelling for filled, uncrosslinked PDMS–

silica (solid line), and for filled and crosslinked (dashed line), using

parameter values listed in Table 1. Strain is extension along one axis.
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case of tensile strain, this can be easily computed at each

strain step. A representative plot of this is shown in Fig. 6,

again, for illustrative purposes.

Stress hysteresis is observed in both silica-filled PDMS

and carbon black rubber and its origin is still an outstanding

question. We performed a simple cyclic tensile strain

simulation using the parameter set listed in Table 1. As is

clear from Fig. 7, the two-force node interaction model

appears to have an intrinsic mechanism for stress hysteresis.

For this simulation, a filled but uncrosslinked network was

stretched by a factor of 6 and then returned back to its

original length. The strain deformation was accomplished

by incremental affine transformations with a relaxation step

as explained above. The abrupt drop in stress, as the strain is

reversed (i.e. the extension factor is changed from 1.002 to

0.998), is due to the response of taut chains. As the

separation distance between connected nodes is decreased,

taut chain segments are flagged as slack and the chain force

changes abruptly from the slip value to stretch. Further

scrutiny and testing will be necessary to determine whether

or not this offers a viable explanation of stress hysteresis.

5. Conclusions

An explicit three-dimensional, molecular level polymer

and node network model has been developed to simulate the

micromechanical response of a mesoscale volume element

of a filled and crosslinked polymer system in response to

various strains. For comparison to experimental data and

demonstrations of code functionality, a two-force node–

node interaction model was assumed, however, any force

model that depends on the distance between network nodes

would be compatible. The model captures the inherent

randomness of filler particle dispersion and the nonunifor-

mity of polymer chain lengths. Predictions for tensile

stress/strain are in quantitative agreement with experiment.

We have also shown that compressive, shear and swell type

strains can be treated quantitatively. With the assumption of

the two-force node–node interaction model, the network

model contains intrinsic mechanisms that may predict the

phenomena of yield stress, tensile failure, permanent set and

stress hysteresis. Because the model can quantitatively treat

a multitude of strain types and associated phenomena, we

expect that a self-consistent set of molecular-level, material

parameter values can be inferred with high confidence. We

anticipate that the numerical model will provide insight into

how the molecular interactions affect elasticity in filled

polymers and will be useful in developing simpler, more

computationally efficient engineering models. We expect

that the model will be made available to other investigators.
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